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Cellular automata are a well-known class of models that characterize many of the 
essential properties of spatially distributed parallel systems. At a yet more 
fundamental level, Burks has employed the cellular automaton modeling for- 
realism to formalize what is meant by "law of nature." In this article, we 
introduce a broader class of spatially distributed models called discrete event cell 
space models. Comparing the old and new formalisms as adequate and conveni- 
ent vehicles for representing various natural and artificial systems, we suggest the 
potential of the discrete event approach for modeling at the level of fundamental 
physics. 

1. CELLULAR A U T O M A T A  AND T H E  LAWS O F  N A T U R E  

Arthur  Burks, when explicating what is meant  by a "law of na tu re"  
states that it has three main  features: uniqueness,  modality,  and un i fo rmi ty  
(Burks, 1977, p. 425). Very briefly, "uniqueness"  means that the law makes 
unequivocal  assertions, "modali ty,"  that it holds not  only for actual,  bu t  
also possible, situations, and "uniformity ,"  that it applies un i formly  to all 
points  in space and time. Proceeding to formalize these concepts, Burks 
presents cellular automata  as model systems in which such laws of this 
na ture  are readily comprehended. (Burks, 1977, p. 562). A cellular au toma-  

IThis work was prepared with the assistance of NSF Grant No. MC578-26016. A more 
extended version under the title "Cellular Space Models: New Formalisms For Simulation and 
Science" will appear in a collection in honor of Arthur W. Burks, edited by M. Salmon and to 
be published by Reidel. 
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ton / is characterized by specifying three parameters: a set of states S, a 
neighborhood N, and a transition function T. The interpretation o f  the 
triple (S, N, T )  is as follows: 

One imagines a checkerboard stretching out towards infinity in 
both north-south and east-west axes. At each square is located a 
cell with state set S. The neighbors of a cell located at square 
(i, j )  (where as will be apparent "neighbors" is intended in an 
informational sense) are simply determined from the neighbor- 
hood N: in fact, N is a finite ordered set of integer pairs and the 
neighbors of this cell are located at the squares obtained by 
adding (i, j )  to each pair of N (vector addition). Now imagine a 
global state of this system pertaining at some time instant t, i.e., 
assign to each cell a state from the set S. Then the system will 
move to a succeeding global state at time instant t + 1 which is 
determined as follows: Simultaneously, for each cell apply the 
transition function T to the states of its neighbors and let the 
result be the state of the cell at t + 1. 

Within such a framework, Burks identifies a law of nature as asser t ing 
a property of the transition function. Indeed, further placing a cont igui ty 
requirement on such a l aw- - tha t  it assert a Humean direct spat iotemporal  
cause-effect  relat ion-- i t  can be identified with a statement of the following 
form: 

If  the states of the neighbors of a cell satisfy P at time t then the 
state of the cell will satisfy Q at time t + 1. 

A somewhat less general way to capture this idea is that a law of na tu re  
reveals what the transition function T is for one or more of its arguments .  

Let us see how cellular automata universes exemplify the three features  
of natural laws. "Uniqueness" is embodied in the transition relation be ing  a 
function, i.e., specifying a unique next state for a cell as determined b y  the 
present states of its neighbors. In the system theoretic context this feature  is 
called local determinism, and also implies global determinism: every g lobal  
state of the system has a unique successor. 

"Modality" is exemplified by the fact that there are many possible  
initial global states of the system, each initiating a state trajectory which can 
be postulated to be the actual history of our universe. Only one can in fact 
represent the actual universe while the others represent "causally possible"  

2More precisely, we are restricting our discussion to two-dimensional, deterministic cellular 
automata. The reader wishing more background in the subject may consult Burks (I 970), 
Barto (1975), and Zeigler (1976, Chap. 4). 
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universes, i.e., state histories that could have happened according to the laws 
of na tu re - - the  transition func t ion- -bu t  did not because the initial state was 
as it was. Burks formalizes this "could have happened" (counterfactual) 
feature by means of the nonparadoxical causal implication operator  of 
modal logic: 

*) For all cells c and times t, the neighbor states of c satisfy P 
at t nonparadoxicaUy causally implies that the state of c 
satisfies Q at t + 1. 

Such an implication asserts a transition relation which holds for all 
causally possible universes including the postulated actual one. 

"Uniformity" is embodied in the universal quantification over space 
and time of the foregoing scheme. More specifically, every cell no matter  
where located, has the same state set and the same transition function. And 
while neighborhoods are not literally the same, they are all " isomorphic" in 
the sense that any one is a translation of any other [or indeed a translation 
of the set N which turns out to be the neighborhood of the origin (0,0)]. 
Thus a cellular automaton specifies a system which is both discrete and 
invariant in both time and space. 

While cellular automata exemplify the features of natural laws, it does 
not follow that they are the only formal models which do so, or indeed, that 
these features are mandatory for any formalism to be useful for science. In 
this paper we shall examine some of the questions raised by the foregoing 
observations. We shall introduce a class of cellular models called discrete- 
event cell spaces which also exhibit some features of natural laws but which 
are more convenient to employ than the cellular automata in many simula- 
tions of natural and artificial systems. Indeed, we show that the representa- 
tion of phenomena of interest to physics such as motion, collision, and 
"action at a distance" is natural in the discrete-event framework while 
stilted or impossible for cellular automata. 

2. DISCRETE-EVENT CELL SPACE M O D E L S  

Discrete-event cell space models preserve the spatial discreteness of 
cellular automata as well as their space and time invariance. However, the 
time base is no longer discrete but is continuous, that is to say, there is no 
intrinsic time step for such models. Events, i.e., cellular state transitions, 
may occur at irregularly spaced intervals, not necessarily synchronized to 
the beat of a clock as in the cellular automaton case. These events are all 
scheduled to occur as a consequence of the actions of cells: a cell may 
schedule events to occur to itself as well as to its neighbors, and these events 
may in turn schedule other events, and so on. 
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Next-event models form a subclass of the more general discrete-event 
models - -o ther  subclasses of the latter are the activity scanning and process  
interaction models)  Activity scanning and process interaction cell space 
models can be defined by combining the cell space structure w i t h  the 
appropriate dynamic structure, as we now shall do for the next-event  
models. 

A next event cell space (NEVS) is specified by a quadrup le  
(S ,  N,  T, SELECT),  where the first three parameters bear a resemblance to 
those of the cellular automaton, but their interpretation is quite different .  
As before, one imagines an infinite checkerboard, with each square conta in-  
ing a cell. However, the state of any cell is now a pair (s, a), where s is an 
element of S and sigma is a nonnegative real number (it will be useful  to 
allow sigma to take on the value of infinity oe as well). A cell in state (s ,  a )  
will remain in "sequential" state s for a time cr before undergoing a 
self-induced transition. However, in the meantime its state may be a l tered as 
a result of some other cell's action. Thus s and a are called the sequent ial  
state and time left components of the total state (s, o). If  cell c is in state 
(s, a)  at time t, this can be expressed as 

*) Cell c is in sequential state s and is scheduled for a transition 
in time a (or at time t + o). 

As before the neighborhood of a cell is computed by add ing  its 
coordinates to the prototype neighborhood N (a finite set of pa i r s  as 
before). When a transition event occurs to a cell, it and and its neighbors  
undergo an immediate state change as dictated by the transition funct ion T. 
Thus, in contrast to the automaton case, T takes a list of pairs (s, a ) - - t h e  
total states of the cell and its neighbors just before the even t - - and  produces  
a list of such pairs--giving the total states of these cells just a f t e r  the 
transition. 

In contrast to the cellular automaton, the updating of an NEVS m o d e l  
takes place at irregularly spaced computation instants. Let t i be such  an 
instant; then its successor ti+t is computed as follows: 

Imagine the global state at time t i to be a list of pairs (s, a )  
containing the total states of all the cells at this time. Let a* be 
the minimum of all the o ' s  on the list. Then t~+ I = t~ + a*. 

The global state at time ti+ 1 is computed as follows: 
Call the cells whose a ' s  at t~ were equal to a* the I M M I N E N T  cells. 

These cells are all scheduled for a transition event at t~+ t. If  there are m o r e  

3The discrete-event formalism and its subformalisms express the models implemented in 
discrete-event computer simulation languages. For background in this area, the reader is 
referred to Zeigler (1976, Chap. 9). 
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than one, apply the SELECT function to choose one of the I M M I N E N T  
cells, call it c*. (Thus the SELECT function provides the desired tie 
breaking rules when more than one transition event is scheduled for 
activation at the same time.) The chosen cell c* carries out the transition 
function as indicated above resulting in a new global state which is related 
to that pertaining at t i as follows: 

The total states of the neighbors of c* are as dictated by T; the total 
state of every other cell is converted from (s, o) to (s, o - o*). 

3. EXAMPLES OF DISCRETE-EVENT CELL SPACE M O D E L S  

Some examples of next-event cell space models will be given to il- 
lustrate their operation and versatility. They will also serve to point out the 
differences in expressive capability relative to cellular automata. 

3.1. Example 1: Motion of a Single Body. Let us begin simply by 
expressing the motion of a single object in a NEVS. The object is to move to 
the right, at a speed of one square every M O V E T I M E  seconds. An 
appropriate NEVS is defined as follows: 

Every cell has two states, one to indicate the presence of the object and 
the other its absence: thus S =  {0, 1). The absence indicator 0 is a passive 
state, i.e., a cell in this state will never become active of its own accord. This 
is represented by the total state pair (0, oo) which indicates that the time left 
for a cell in sequential state 0 to change state is oo. On the other hand, the 
presence indicator 1 is an active state (opposite of a passive state); indeed, it 
is the source of motion in this example. 

To get the object to move we must arrange for a cell in state 1 to cause 
its right adjacent (physical) neighbor to enter state l after staying in this 
state for MOVE_TIME seconds. Thus for the neighborhood N we require 
only the two integer pairs ((0,0) , (I ,0)}--adding (i, j )  to each we obtain 
((i, j ) , ( i  + 1, j )},  the coordinates of the cell at (i, j )  and it's right neighbor. 

In the light of the above comments, the transition function can be 
expressed as follows: 

*) set your own sequential state to 0 and passivate (set your  
own time-left to ~ )  

set right neighbor state to 1 and schedule a transition event 
there in MOVE TIME 

(set neighbor's time-left to MOVE TIME) 

The SELECT function is arbitrary in this example since at most one 
event is scheduled at any time. 

Starting from an initial global state in which all but one cell are in state 
(0, oo), the exception being in state (1,MOVE TIME), successive global 
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states are generated every MOVE TIME seconds in which a 1 is s een  to 
travel horizontally to the right. 

3.2. Example 2: Traffic Congestion. Note that the above model does 
not specify what happens in the case of collisions--when two or m o r e  
objects want to move into the same square. The present example exemplif ies 
this phenomenon. Consider cars which move to the right at a constant speed  
when possible (traveling in an east-bound lane for example). When t h e  car 
immediately ahead obstructs progress a car seeks to pass preferably t o  the 
right, but also to the left if the first is not possible. The patterns of t raff ic  
congestion which develop can be studied with NEVS models of which  the 
following is prototypic: 

The state set S = {0, 1 } to represent absence and presence of a car as  in 
Example 1. We put in the neighborhood N all cells immediately above,  
below, and to the right of the center ceil to allow for the possibility t h a t  a 
car may move in these directions if direct progress is blocked. Let _N be 
ordered in the order of preferred motion as illustrated in Figure 1. T h e n  the 
transition function T can be expressed as follows: 

*) Find the first unoccupied neighbor cell 
(scanning in the preference order) 

set this cell to state 1 and schedule a 
transition event there in MOVE TIME 

set your state to 0 and passivate. 
leave all other cells unaffected 

(let their sequential states remain unchanged and subtract 
your time-left (o*) from theirs) 4 

if no unoccupied neighbor exists 
reschedule yourself in time C H E C K  A G A I N  TIME 
leave all other cells unaffected. 

The SELECT will determine which of two or more cars contending for 
the same square at the same time will move into it. Thus, the order in which 
I M M I N E N T  cells are selected does make a difference in this example.  
SELECTION, based on "right of way" principles, for example, therefore 
incorporates essential model hypotheses in this case. 

An initial global state in this model consists of putting a finite se t  of 
cells in sequential state 1 with a time-left o between 0 and MOVE T I M E ;  
all other cells are set to the passive (0, oo) state. The pattern then generally 
moves right with rearrangements as cars take diversionary maneuvers  to 
bypass obstructions. 

4This is to update the time left values appropriately as with all nonneighboring cells in the 
space. 
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Fig. 1. Neighborhood for traffic congestion model 

Note that to make the simulation more realistic, MOVE T I M E  and 
C H E C K  A G A I N  TIME can be made to be random variables s o  that  cars 
move at randomlyassigned rather than constant speeds# 

3.3. Example 3: P l a n t  Growth: Gravity Signal. This example shows how 
next-event models can handle "action at a distance" in a very natural 
manner. Consider embedding a plant in a cell space as illustrated in Figure 
2. Growth is made to occur at the tip of the plant by sprouting a new cell 
every G R O W T H  TIME hours. The extra weight is transmitted to the stem 
and base cells by a gravity signal which travels instantaneously downward. 
Thus at the same computation instant at which the tip extends itself, the 
weights on the other ceils are simultaneously increased--and this happens 
no matter how long the plant becomes. The following NEVS will exhibit 
this behavior: 

Let the state set S be {0, 1,2, 3 . . . .  }, where 0 is a passive environmental 
state and i > 0  is a plant cell supporting a total weight of i units (itself plus 
i - 1 cells above it). The neighborhood N consists of the center cell and the 
cells above and below it. The transition function T is expressed as follows: 

*) If  you are the tip (center cell sequential state = 1) 
set the upper neighbor to state 1 and 

schedule a transition event to 
occur there in G R O W T H  TIME 

if the lower neighbor is a plant cell (state = i > 0) 

5 Zeigler (1976, Chap. 6) shows how this is done formally. 
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Fig. 2. Embedding of a plant in a next-event cell space. 

add  1 to its state and  schedule a 
t rans i t ion  event to occur  there in 0 t ime 
set yoursel f  to state 2 and pass ivate  

Otherwise  (you are  a p lan t  cell) 
if the lower ne ighbor  is a p lan t  cell 

add  1 to its s ta te  and  schedule a 
t ransi t ion to occur  there in 0 time. 

Note  that  if the act ivated cell is a tip then it carries out  three ac t i ons :  
sprout  a new tip upward ,  s tar t  a gravi ty signal  downward  and t r a n s f o r m  
itself to a passive p lan t  cell; if the ac t iva ted  cell is a p lan t  cell it  p a s s e s  on  
the gravity signal (unless it  is a base cell known by the fact that  its l o w e r  
ne ighbor  is an envi ronmenta l  cell). 6 

6Studies of plant growth using discrete event models may be found in Hogeweg (1980). 
Actually, it is interesting that a further extension of the cell space formalism is necessary to 
conveniently express growth in the interior of a plant--the neighborhood must be allowed to 
change (Lindenmeyer, 1968; Herman and Rosenberg, 1975). 
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When started in a global state such as illustrated in Figure 2, this 
NEVS will display plant extension with weight accumulation in "real time" 
(see later comparison with cellular automata). 

3.4. Other Examples. Collisions which result in changes of state are 
naturally expressed in the NEVS framework. Such collisions occur, for 
example, when two molecules collide and combine chemically or when 
predators devour prey giving birth to new predator offspring. In an NEVS 
model, each cell may represent a "patch," a hospitable area isolated from 
other patches by inhospitable terrain. Prey species colonize such patches 
and are predated upon by predators. Both species tend to remain localized 
to a patch until forced by shortage of resources to migrate. How far 
migrants can get to is species dependent (depending on such factors as 
speed of travel, ability to survive without food, etc.). Studies have been done 
in which colonization and migration are made stochastic and the space is 
limited to a finite region. The evolution of the system is followed to see if 
global persistence of predators is maintained despite almost certain local 
extinction (Zeigler, 1977; Sampson and Dubreuil, 1979). 

Cellular models are natural media for representing networks of com- 
puting devices. Indeed, von Neumann originally invented the cellular au- 
tomaton framework to embed networks of logical elements with the purpose 
of e~tibiting systems with self-reproductive ability (von Neumann, 1966). 
Subsequently, this framework under the rubric "tesselation or iterative 
arrays" has been extensively employed for hardware design. Extending the 
same principles to the discrete-event cell space, one can readily model 
networks of asynchronous elements for questions of logical correctness, 
coordination control, and reliability. Such networks may model computer 
systems at all levels, whether the components be electronic elements, hard- 
ware devices, or full-scale computers connected by communications links. 

On the natural computing side, cellular automata have been used to 
model networks of neurons, and the extension to discrete-event models is 
natural (Barto, 1975, and citations therein). 

4. CELL SPACE FORMALISMS: THE ADEQUACY ISSUES 

We raised the issue of adequacy of model formalisms for expressing 
real-world relationships. This is a multisided question which we cannot hope 
to answer fully in this paper. But we can explore some of its aspects. One of 
these is a formal one: the relative expressive power of a formalism. We shall 
first comment upon this "hard" criterion as a backdrop for consideration of 
the "softer" questions such as convenience, versatility, naturalness, etc. 

Expressive Power:. A "Hard" Criterion. By the expressive power of a 
formalism is meant the class of systems it can specify (Zeigler, 1977b). We 
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can compare powers of two formalisms by asking whether every system 
specified by a model in one can also be specified by a model in the other.  In 
this form, automata and discrete-event systems are incomparable s ince the 
time bases are distinct. Thus we are led to the more sophisticated formula-  
tion: can every system specified in one be "simulated" by a system specified 
in the other? Now the formal concept of "simulation" is as expressed in a 
hierarchy of system-preservation relations (articulated in Zei~er, 1976, 
Chap. 10). At the lowest level, we require only that one system reproduce 
the external behavior of another in order to grant it simulation capability; at 
the higher levels, we require that the first represent more and more o f  the 
internal structure of the second to be accorded such status. Thus a s  we 
ascend the hierarchy, simulation related systems will be "closer" together  in 
structure and behavior. Conversely, as we descend, systems so related may 
be more and more different in their detailed operation. A consequence of 
this fact is that as we loosen our definition of simulation, we increase the 
expressive power of formalism but at the expense of burdening the observer 
with the task of making the translation required to interpret the behavior  of 
the simulator as revealing that of the simulatee. 

With this as prologue, let us compare the powers of the cellular 
automata and NEVS formalisms. We shall restrict our attention to compu-  
table models, i.e., models whose behavior can be computed by a(n) (ideal- 
ized) digital computer]  Then it is easily seen that the cellular automata can 
simulate any NEVS in the sense of computing its behavior. The argument  is 
simple: to be computable is more particularly to be computable by a Tutring 
machine. Now any Turing machine can be embedded in a cellular au toma-  
ton space [using von Neumann's construction or the very straightforward 
approach of Smith (1972)]. Composing the two simulations we get that any 
next-event cell space model can be simulated by some cellular automaton.  

Of course, the concept of simulation employed in this result is a ra ther  
weak one (lies at the lower level of the hierarchy) and states little more than  
that a cellular automaton can be used as a computer to generate the 
behavior of a NEVS. It leaves the burden of writing and interpreting this 
simulation to the user and so says nothing of the ability of the au tomaton  
formalism to directly express NEVS-like models. 

7For cellular automata, a cell state is "quiescent" if the global state in which all cells are 
assigned this state is an equilibrium state. A computable (or algorithmic) cellular automaton is 
one having at least one quiescent state called the "blank" state and whose initial global states 
are restricted to those in which only a finite number of cells are not in the blank state (Burks, 
1977, pp. 566 and 567). In the NEVS case, the role Of the blank state is played by a passive 
state (recall earlier definition). A computable NEVS has such a blank state and is initialized 
only from global states having a finite number of nonblank cells. We also require that all real 
numbers used must be representable by fixed precision rationals as they would be in a digital 
computer. 
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In fact, this ability is demonstrably limited when the simulation rela- 
tion is tightened (hierarchical level increased) by requiring the simulation to 
be in "real time." This requires that the simulator reproduce the behavior of 
the simulatee in phase with it (allowing the simulator no intermediate 
computationS). Let us employ such a relation in which we require that each 
cell state of the simulator be interpretable as a ceU state of the simulatee [we 
allow the simulator cells to have any (including infinite) number of states]. 
Under such a readout map we require that the simulator produce the same 
output trajectory as the simulatee when started in corresponding global 
states. 

Using the above simulation relation we can show that every cellular 
automaton can be simulated by some NEVS but that the converse does not 
hold. Thus the next-event formalism is the more powerful in terms of direct 
model expression. 9 We sketch the proof of this result. 

First the positive part. Let (S, N, T)  specify a cellular automaton. We 
specify a NEVS (S',  N', T', SELECT) as follows: 

S' is composed of two copies of S, one to hold the present state 
of a cell after its next state is computed. Also there is a third 
component to S' which is a phase indicator: in phase 1, the 
next state of a cell is computed; in phase 2, the next state is 
transferred into the present state location and the inverse 
neighbors are activated (see below). 

N' is the union of the neighborhood N and the inverse neighbor- 
hood - N .  The inverse neighborhood consists of the set of 
cells directly influenced by the center cell: those cells to whose 
neighborhood the center cell belongs. The inverse neighbor- 
hood of the origin can easily shown to be - N ,  i.e., the 
negatives of each of the pairs of N (see Zeigler, 1976, Chap. 4). 

The transition function T' is expressed as follows: 

*) in phase 1: 
apply T to the present states of the cells 

in N and store the result as the next 
state of the automaton cell 

Sin the case of cellular automata one can even allow a fixed number of intermediate-state 
transitions without increasing the power of the class, since all this does is effectively expand 
the neighborhood of the simulator, a free parameter in the cellular automaton class. 

9However, as a consequence of this observation and the previous one, the unrestricted 
simulation capability of the two is the same, both being computation universal. 
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set the phase indicator to 2 and reschedule 
an event here in 0.5 

in phase 2: 
transfer the next state to the present state 
set the phase indicator to 1 and 
reschedule an event here in 0.5. 
if you truly changed state 

(next state not = present state): 
schedule an event to occur in 

time 0.5 at all cells in - N which are passive 

The SELECT function is arbitrary: the result will not depend on the 
order in which scheduling ties are broken. 

The readout map in this simulation just consists of paying at tent ion to 
the present state component of S' and ignoring the rest. Initialize the N E V S  
to a global state in which all cells are in phase 1 and have time-left e i ther  0.5 
(representing initially nonblank cells and their inverse neighbors) or oo (all 
other blank cells). It will then output a trajectory which reproduces the 
global state transitions of the cellular automaton every 1 time unit. l° 

Now for the negative part: By virtue of its finite neighborhood the 
cellular automaton eschews "action at a distance" (Burks, 1977, p. 569). By 
allowing instantaneously propagating signals, as in the plant growth exam- 
ple, the NEVS formalism does not impose this restriction. 11 In particular the 
plant model can be shown not to be simulatable by any cellular au tomaton  
in the real time sense. To see this consider a plant configuration which has 
extended beyond the neighborhood of the base cell. To simulate the p lan t  
model, the base cell readout must increase by 1 at the next time step (for  
simplicity let GROWTH TIME be unity). But now consider the same 
configuration in which t ~  growth tip is removed. Then it can be readily 
checked that the NEVS model will not change state (no gravity signal will 
be sent down to the base). But in the purported simulation the base cell 
readout must still increase by 1 since its neighborhood configuration has not 
been affected by the removal of the growth tip. 

In short, a cellular automaton realization of the plant model would 
require an infinite neighborhood to instantaneously pass the weight infor-  
mation generated at the arbitrarily extending tip to the base and stem cells. 

]°This construction is of more than theoretical interest: it parallels an efficient strategy for 
digital simulation of cellular automata (Zeigler, 1976, Chap. 4). 

i J Holland has developed an extension of the cell space concept which removes the action-at-a- 
distance limitation as well (Holland, 1970). His scheme lays down wires capable of passing 
instantaneous signals in such a way that no cycles or infinite paths are generated. In  our 
scheme such conditions are possible and are the responsibility of the user to prevent. The 
criteria for well-defined discrete event specifications are discussed in Zeigler (1976, Chap.  9). 
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5. CELL SPACE MODELS: THE "SOFT"  ADEQUACY 
CRITERIA 

The expressive power of a formalism throws light on but does not  close 
the question of its adequacy. We can see, for example, that the two 
formalisms under discussion are computationally equivalent (a loose notion 
of simulation) but differ quite drastically when more direct model represen- 
tation is required-- the cellular automaton being incapable of exhibiting 
immediate signal propagation in real time. And although any cellular 
automaton can be directly represented in next-event form, the representa- 
tion (S ' ,  N', T', SELECT) contains much additional apparatus not found in 
the original specification (S, N, T) .  Thus if one had already developed a 
simple cell space model, one would have to complicate its description in 
order to convert it to next-event form. Moreover, the result would obscure 
the parameters of the original specification and would be more difficult to 
modify because of the interdependencies of the components of the new 
parameters (N',  for example, consists of N and - N: if a change is made in 
N a corresponding change must be made in - N). The same considerations 
hold, in even more striking form, when expressing simple NEVS models as 
cellular automata. To make this point we shall consider expressing the 
models given in Example 1-4 as cellular automata. 

5.1. Expression of Motion. Consider Example 1 modeling the motion 
of a single body. To represent this in a cellular automaton, we require a 
neighborhood consisting of the center cell and its left adjacent cell (rather 
than the right neighbor as in the NEVS case). The reason is that motion 
consists of two parts: leaving one cell and entering the next. Since all state 
transitions are made independently and simultaneously by automaton cells, 
both cells affected by the motion must do some computation. The cell 
containing the object must release it (change from state 1 to 0) and the cell 
receiving the object must accept i t - - look to the left to see if the neighbor is 
a 1 and if so change itself to state 1. Thus what is a single action in the 
NEVS case is redundantly expressed in two actions in the automaton case. 

5.2. Handling of Collisions. The redundancy of computation required is 
greatly compounded when collisions must be resolved as in the traffic 
congestion model in Example 2. Consider that to compute its next state, the 
automaton cell must independently decide whether any car it contains will 
move fight and also whether any other car will move into it. To see whether 
its car can move, it must look not only for unoccupied cells in its own 
preference order but also check that an unoccupied cell is not "desired" by a 
car with higher priority (otherwise both cars will attempt to move into the 
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same cell). To see whether a car will move into a cell, the cell must check  
whether any car which can move into it, will prefer to do so (a car be low 
will move up only if all of its other possible moves are blocked). The reader  
can convince himself that this computation will require a neighborhood of 
approximately 20 cells (!) and is, of course, heavily redundant- - the  same 
checks being done independently by many cells. 

5.3. Choice of Time Step. The actual value of the time step does not 
appear explicitly in the automaton formalism. However, when discrete t ime 
models are formulated for real systems, the choice of this value is always an 
issue. As discussed by Barto (1975) cellular automata can be viewed as 
providing the formal basis for the usual representation of partial differential 
equation models for computer simulation.. Such models are based on 
continuous time and space variables which are discretized for numerical  
integration. The time step and spatial unit must be chosen carefully to 
conform to the rates of propagation expressed in the original model. 

Similar considerations apply when the underlying model is a discrete- 
event type. The most direct way to simulate an NEVS by a cellular 
automaton is to let the automaton cell state be a pair (s, a) where now o- is a 
nonnegative integer or ~ .  The transition function sees to it that a is t reated 
as a time-left variable by decrementing it by I at every time step; when 0 is 
reached, a new total state pair is determined according to the transit ion 
function of the NEVS. Of course, the cell must also check at each time step 
for cells reaching o : 0 for changes that they would cause to it. 

The question is: what real value should the integer a represent? T o o  
small a discretization will result in much unnecessary recomputat ion of 
global states that essentially do not change; too large a value risks missing 
of events which would have occurred in the original. We can conceptualize 
this problem by limiting consideration to recurring cycles of a propagating 
nature (such as the motion of Examples 1 and 2 or the signals of Example  3) 
or of a local nature (such as in Section 3.4). Then if the cycle durations are 
constant the best step size is given by their greatest common divisor. 
However, in even the simplest of models, these durations may not  be 
constant due to being random variables or due to interactions which 
determine the continuation of the cycle (this is especially evident in Section 
3.4 where the cycle must await successive prey and predator migrations in 
order to proceed). 

In conclusion, no general procedure exists for selecting the step size 
underlying cellular automaton representation of NEVS models. Even if st~ch 
a procedure were employed, the step size would have to be recalculated, a n d  
the time-left variables appropriately rescaled, for every change in the N E V S  
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parameters. Thus a cellular automaton realization of models such as those 
of Examples 1-3 would be either inefficient or inflexible (or both). 12 

6. CONCLUSIONS: THE WORLD VIEWS OF FORMALISMS 

Let us summarize the above findings in terms of the "world view" of 
the formalisms. The cellular automaton cell space is one in which each cell 
updates its state at each time step. The updating is done simultaneously and 
independently by the cells. The cell space thus expects a state change to 
occur at every cell even though a true change may not in fact take place. To 
obtain the information necessary for computing its next state, a cell inter- 
rogates the cells of its neighborhood--which must be sufficiently extensive 
to provide this information. Since cells cannot immediately act on one 
another, a cell must predict what effect other cells would have had on it in 
the more interactive NEVS, and this may require large neighborhoods and 
redundant computation. Since all cells use the information current at the 
same date (i.e., the previous global state) to compute their next state, the 
result is independent of any sequential order imposed by a sequential 
simulator. 

The discrete-event cell space on the other hand, considers cells to be 
capable of acting upon their neighborhood as well as themselves. Cells 
undertake their activity in one-at-a-time fashion so that the result is de- 
terrninistic but also may be dependent on the order in which simultaneously 
scheduled cells are serialized by tie-breaking rules. Updating of states occurs 
only via events which need not be uniformly distributed in time or space. 
The information required to schedule its transition event is contained within 
the cell state (in the time left component). 

One's perception of the real system being modeled (presumably reflect- 
ing its intrinsic nature) will determine whether a formalism provides an 
appropriate "world view" for it. My own perception is that for most 
situations, the discrete-event formalism provides the more natural world 
view. That its direct expressive power is provably the greater provides 
support for this ultimately subjective assessment of adequacy but does not 
clinch it. One could, for example, reject instantaneously propagating signals 
as valid explanatory mechanisms--relying on the accepted postulate of the 
finite velocity of l ight--and so maintain that the extra expressive power is 
not of use. (An answer is that often the speed of light is so great compared 

J2It should be noted that the same difficulties do not apply to digital simulation of discrete 
event models (as they do to simulation of differential equation models). The reason is that the 
simulation strategies employed by such discrete event languages as GPSS, SIMSCRIPT, and 
SIMULA are based on event-driven, rather than fixed-step, time advance. 
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to other rates of  interest that it is best modeled as infinite; a cel lular  
au tomaton  which represented a wide range of  signal speeds would su f fe r  
f rom the time step problem discussed above.) Further  support  for  m y  
preference for the discrete-event view is supplied by the fact that  even w h e n  
discrete-event models are expressible in the automaton formalism, the 
resulting descriptions seem to be unnecessarily complex, redundant  and  not  
easily modifiable. Again, it could be countered that the reverse representa-  
tion of  cellular automata  models in the NEVS framework involves a s imilar  
ine legance- -bu t  the degree of inelegance is significant. 

Thus I believe that the discrete-event formalism is the more  a d e q u a t e  in 
terms of  range of expressive power, simplicity of  expression, and flexibility. 
Discrete-event models may thus be of interest to those seeking m o r e  
adequate representations of  the universe at the level of  basic physics. 
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